On units of real quadratic fields
نویسندگان
چکیده
منابع مشابه
On the real quadratic fields with certain continued fraction expansions and fundamental units
The purpose of this paper is to investigate the real quadratic number fields $Q(sqrt{d})$ which contain the specific form of the continued fractions expansions of integral basis element where $dequiv 2,3( mod 4)$ is a square free positive integer. Besides, the present paper deals with determining the fundamental unit$$epsilon _{d}=left(t_d+u_dsqrt{d}right) 2left.right > 1$$and $n_d$ and $m_d...
متن کاملElliptic units for real quadratic fields
1. A review of the classical setting 2. Elliptic units for real quadratic fields 2.1. p-adic measures 2.2. Double integrals 2.3. Splitting a two-cocycle 2.4. The main conjecture 2.5. Modular symbols and Dedekind sums 2.6. Measures and the Bruhat-Tits tree 2.7. Indefinite integrals 2.8. The action of complex conjugation and of Up 3. Special values of zeta functions 3.1. The zeta function 3.2. Va...
متن کاملExplicit Computation of Gross-stark Units over Real Quadratic Fields
We present an effective and practical algorithm for computing Gross-Stark units over a real quadratic base field F. Our algorithm allows us to explicitly construct certain relative abelian extensions of F where these units lie, using only information from the base field. These units were recently proved to always exist within the correct extension fields of F by Dasgupta, Darmon, and Pollack, w...
متن کاملComputations of elliptic units for real quadratic fields
Elliptic units, which are obtained by evaluating modular units at quadratic imaginary arguments of the Poincaré upper half-plane, allow the analytic construction of abelian extensions of imaginary quadratic fields. The Kronecker limit formula relates the complex absolute values of these units to values of zeta functions, and allowed Stark to prove his rank one archimedean conjecture for abelian...
متن کاملCyclotomic units and Greenberg's conjecture for real quadratic fields
We give new examples of real quadratic fields k for which the Iwasawa invariant λ3(k) and μ3(k) are both zero by calculating cyclotomic units of real cyclic number fields of degree 18.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Number Theory
سال: 1972
ISSN: 0022-314X
DOI: 10.1016/0022-314x(72)90041-8